Pathogen‐inducible Ta‐Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects
نویسندگان
چکیده
Plant diseases are a serious threat to crop production. The informed use of naturally occurring disease resistance in plant breeding can greatly contribute to sustainably reduce yield losses caused by plant pathogens. The Ta-Lr34res gene encodes an ABC transporter protein and confers partial, durable, and broad spectrum resistance against several fungal pathogens in wheat. Transgenic barley lines expressing Ta-Lr34res showed enhanced resistance against powdery mildew and leaf rust of barley. While Ta-Lr34res is only active at adult stage in wheat, Ta-Lr34res was found to be highly expressed already at the seedling stage in transgenic barley resulting in severe negative effects on growth. Here, we expressed Ta-Lr34res under the control of the pathogen-inducible Hv-Ger4c promoter in barley. Sixteen independent barley transformants showed strong resistance against leaf rust and powdery mildew. Infection assays and growth parameter measurements were performed under standard glasshouse and near-field conditions using a convertible glasshouse. Two Hv-Ger4c::Ta-Lr34res transgenic events were analysed in detail. Plants of one transformation event had similar grain production compared to wild-type under glasshouse and near-field conditions. Our results showed that negative effects caused by constitutive high expression of Ta-Lr34res driven by the endogenous wheat promoter in barley can be eliminated by inducible expression without compromising disease resistance. These data demonstrate that Ta-Lr34res is agronomically useful in barley. We conclude that the generation of a large number of transformants in different barley cultivars followed by early field testing will allow identifying barley lines suitable for breeding.
منابع مشابه
The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum
The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expr...
متن کاملExpression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum
Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...
متن کاملmlo5, a resistance gene effective against a biotrophic pathogen (Blumeria graminis fsp. hordei) confers enhanced susceptibility of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus)
The barley resistance gene mlo5 determines race non-specific resistance to the biotrophic powdery mildew pathogen Blumeria graminis f.sp. hordei. On the other hand, we have shown that barley lines that contain the mlo5 gene display enhanced susceptibility to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxic culture filtrate (Kumar et al. 2001). Enhan...
متن کاملHeterologous Expression of the Secale cereal Thaumatin-Like Protein in Transgenic Canola Plants Enhances Resistance to Stem Rot Disease
Canola (Brassica napus L.) is an important oilseed crop. A serious problem in cultivation of this crop andyield loss, are due to fungal disease stem rot caused by Sclerotinia sclerotiorum. The pathogenesis-related(PR) proteins have the potential for enhancing resistance against fungal pathogen. Thaumatin-like proteins(TLPs) have been shown to have antifungal activity on variou...
متن کاملPapaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance
A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...
متن کامل